Linker-Gating Ring Complex as Passive Spring and Ca2+-Dependent Machine for a Voltage- and Ca2+-Activated Potassium Channel
نویسندگان
چکیده
Ion channels are proteins that control the flux of ions across cell membranes by opening and closing (gating) their pores. It has been proposed that channels gated by internal agonists have an intracellular gating ring that extracts free energy from agonist binding to open the gates using linkers that directly connect the gating ring to the gates. Here we find for a voltage- and Ca(2+)-activated K+ (BK) channel that shortening the linkers increases channel activity and lengthening the linkers decreases channel activity, both in the presence and absence of intracellular Ca2+. These observations are consistent with a mechanical model in which the linker-gating ring complex forms a passive spring that applies force to the gates in the absence of Ca2+ to modulate the voltage-dependent gating. Adding Ca2+ then changes the force to further activate the channel. Both the passive and Ca(2+)-induced forces contribute to the gating of the channel.
منابع مشابه
Deletion of cytosolic gating ring decreases gate and voltage sensor coupling in BK channels
Large conductance Ca2+-activated K+ channels (BK channels) gate open in response to both membrane voltage and intracellular Ca2+ The channel is formed by a central pore-gate domain (PGD), which spans the membrane, plus transmembrane voltage sensors and a cytoplasmic gating ring that acts as a Ca2+ sensor. How these voltage and Ca2+ sensors influence the common activation gate, and interact with...
متن کاملVoltage and Ca2+ Activation of Single Large-Conductance Ca2+-Activated K+ Channels Described by a Two-Tiered Allosteric Gating Mechanism
The voltage- and Ca2+-dependent gating mechanism of large-conductance Ca2+-activated K+ (BK) channels from cultured rat skeletal muscle was studied using single-channel analysis. Channel open probability (Po) increased with depolarization, as determined by limiting slope measurements (11 mV per e-fold change in Po; effective gating charge, q(eff), of 2.3 +/- 0.6 e(o)). Estimates of q(eff) were ...
متن کاملLarge conductance Ca2+-activated K+ (BK) channel: activation by Ca2+ and voltage.
Large conductance Ca2+-activated K+ (BK) channels belong to the S4 superfamily of K+ channels that include voltage-dependent K+ (Kv) channels characterized by having six (S1-S6) transmembrane domains and a positively charged S4 domain. As Kv channels, BK channels contain a S4 domain, but they have an extra (S0) transmembrane domain that leads to an external NH2-terminus. The BK channel is activ...
متن کاملThe effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel
Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...
متن کاملThe effect of stress and glucocorticoids on modulation of pain in mice: Interaction with activation of voltage dependent Ca2+ channel
Previous studies indicated that stress and glucocorticoids have modulatory effects on acute pain. The aim of present study was to determine the interaction between stress and glucocorticoids with activation of voltage dependent Ca2+ channel on modulation of acute pain in mice. Male albino mice (25-30 g) were used for this experiment. Tail flick and hot plate were used for evaluation of analgesi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- Neuron
دوره 42 شماره
صفحات -
تاریخ انتشار 2004